Наследственная информация определение. Генетическая информация

Наследственная информация определение. Генетическая информация

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода. Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Современная биология утверждает, что одна из главных черт жизни - это самовоспроизводимость. Самовоспроизводимость - это способность живого организма к размножению, рождению и выращиванию себе подобных.

Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.

Таким образом, нам необходимо вспомнить, что мы знаем о молекуле ДНК.

Структура молекулы ДНК была изучена в 1953 г. Дж.Уотсоном и Ф.Криком. Они установили, что молекула ДНК состоит из двух цепей, образующих двойную спираль, которая закручена вправо (по часовой стрелке). К полимерному остову спиральной цепи ДНК (состоит из чередующихся остатков фосфата и сахара дезоксирибозы) «прикреплены» нуклеотидные остатки. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию. Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали.

Цепи ДНК - комплементарны, т.е. имеется взаимное соответствие между их нуклеотидами, которые образуют уотсон-криковские пары Г-Ц и А-Т. Сами же цепи в двойной спирали антипараллельны.

Рис.1. Схематический вид молекулы ДНК

На рис.2 показана часть расшифрованной структуры молекулы ДНК.

Итак, напомним, что в основе самовоспроизводства лежит способность молекулы ДНК к удвоению, которое называется репликацией ДНК.

Репликация ДНК основана на принципе комплементарности, что хорошо иллюстрируется схемой, приведенной на рис.3.

Рис.3. Удвоение молекулы ДНК.

В живой клетке удвоение происходит потому, что две спиральные цепи расходятся, а потом каждая цепь служит матрицей, на которой с помощью особых ферментов собирается подобная ей новая спиральная цепь ДНК. В результате вместо одной ДНК образуются две, неотличимые по строению от родительской молекулы ДНК (рис.4).

Рис.4. Репликация ДНК

В результате создаются две двойные спирали ДНК (дочерние молекулы), каждая из которых имеет одну нить, полученную из материнской молекулы, и одну нить, синтезированную по комплементарному принципу.

Теперь обсудим, как происходит передача информации в клетке. Напомним, что у часток молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет двумя путями: - по каналу прямой связи (ДНК - РНК – белок); и по каналу обратной связи (среда - белок – ДНК).

Синтез белка происходит в рибосомах клетки. К ним из ядра поступает информационная (или матричная) РНК (иРНК), которая может проникать через порог ядерной мембраны. Что же такое иРНК?

иРНК это:

а) одноцепочечная молекула, комплементарная одной нити ДНК;

б) копия ДНК

в) копия не всей молекулы ДНК, а лишь ее части (по длине). Эта часть соответствует одному или группе рядом лежащих генов

г) молекула, образованная под действием специального фермента – РНК-полимеразы, которая, продвигаясь по нити ДНК, ведет синтез иРНК; данный процесс называется транскрипцией.

Как определяется длина части ДНК, с которой снимается копия в виде иРНК? В начале этой части и в ее конце находятся специфические последовательности нуклеотидов, которые может "узнавать" РНК-полимераза и таким образом "определять" участок считывания.

Весь процесс репликации, осуществляемый разными белками-ферментами, очень согласован, поэтому часто употребляют термин - работа «репликационной машины». Репликация идет с очень высокой точностью. ДНК млекопитающего состоит из 3 млрд. пар нуклеотидов, а в процессе воспроизведения допускается не более 3 ошибок.

При этом надо помнить, что синтез идет с большой скоростью - от 50 до 500 нуклеотидов/сек, поэтому в клетке существуют специальные корректирующие механизмы: ДНК-полимеразы дважды проверяют соответствие нуклеотидов исходной матрице.

Итак, в процессе синтеза белка иРНК, пройдя через ядерную мембрану, поступает в цитоплазму к рибосомам, где осуществляется:

а) расшифровка генетической информации,

б) синтез из аминокислот биополимерной макромолекулы белка.

Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК). В клетке имеется столько аминокислот, сколько типов кодонов, шифрующих аминокислоты.

Генетический код

Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка.

Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У)задает любую из 20 аминокислот.

Свойства генетического кода:

а). Код триплетен

Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном.

б). Код вырожден.

Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту).

в). Код однозначен.

Каждый кодон соответствует только одной аминокислоте.

г). Генетический код универсален, т.е. един для всех живых организмов планеты.

Таким образом, ген представляет собой чередование «слов из трех букв» - кодонов, образованных из четырехбуквенного алфавита.

Необходимо особо подчеркнуть универсальность генетического кода – с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором – лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.

Программа «Геном человека»

Международная программа «Геном человека» посвящена решению проблемы картирования генов человека. Число генов в составе ДНК человека около 50-60 тысяч, что составляет только 3% общей длины ДНК; роль остальных 97% пока неясна.

В каждой клетке человека содержится 46 молекул ДНК, которые распределены в 23 парах хромосом. Хромосомы - это структуры, по которым распределена полная молекула ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке человека равна около 2 метров. Полная же длина всех молекул ДНК в теле взрослого человека, состоящего из 5х1013 клеток, составляет 1011 км, что в тысячу раз превышает расстояние от Солнца до Земли.

К настоящему времени практически полностью расшифрована полная последовательность ДНК человека.

Главная задача исследований - изучить вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить генетические различия между ними. Анализ таких различий позволит построить индивидуальные генные портреты людей, что даст возможность лучше лечить болезни. Кроме того, такой анализ позволит выявить различия между популяциями и выявить географические районы повышенного риска поражения генома людей.

Таким образом, благодаря геномным исследованиям стало ясно, что в ходе эволюции жизни на Земле сначала выделились представители архей, имеющих клетки без ядер, а позже - эукариот (состоящих из клеток с ядрами), включая человека.

Геномными исследованиями было выявлено также совпадение нуклеотидных последовательностей у неродственных видов. Это дает основания предположить, что в процессе эволюции происходил перенос генов от одного вида к другому. Например, оказалось, что геномы человека и мыши весьма близки - их нуклеотидные последовательности совпадают более чем на 90%.


Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Предполагается, что становление генетической информации шло по схеме: геохимические процессы - минералообразование - эволюционный катализ (автокатализ).

Почти вся генетическая информация хранится в ядре клетки. Давайте рассмотрим, что она собой представляет и в каком виде она находится.
За генетическую информацию несет ответственность ДНК, а в случае вирусов РНК. Внутри ядра ДНК «сложена» в структуры называемые хромосомы. В человеческом теле содержится более 2 метров ДНК. Информация о строении белков зашифрована на молекулах ДНК и РНК специальным генетическим кодом. Эта информация предается в процессе репликации (удвоения) ДНК. Генетическую информацию мы получаем при рождении от мамы и папы в виде множества генов. Что интересно все клетки нашего организма содержат одинаковую генетическую информацию. Как же тогда возможно выполнения различными клетками совершенно разных функций? Дело в том, что в клетках не реализуется вся генетическая информация, а только лишь необходимые участки - гены.

Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: - по каналу прямой связи: ДНК - РНК - белок; и - по каналу обратной связи: среда - белок - ДНК.

Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно. Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам. Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.

В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И. Карагодин считает: "Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды". Связь информации с жизнью отмечает и А.А. Ляпунов: "Жизнь - это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул". Известный наш астрофизик Н.С. Кардашев также подчеркивает информационную составляющую жизни: "Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации". На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге "Физика бессмертия" эколог Ф. Типлер: "Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором". Более того, он считает, если это так, то система жизнь - информация является вечной, бесконечной и бессмертной.

Раскрытие генетического кода и установление закономерностей молекулярной биологии показали необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма - синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию.

Основные идеи эволюции Дарвина с его триадой - наследственностью, изменчивостью, естественным отбором - в современном представлении эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически. Началом разработки синтетической или общей эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.

Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. А с другой - к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.

Генетический код – это система записи генетической информации в молекуле нуклеиновой кислоты о строении молекулы полипептида, а именно, о количестве, последовательности расположения и типах аминокислот. В одном гене записана информация об одной полипептидной цепочке, т.е. о первичной структуре белка.

Генетический код характеризуется триплетностью, т.е. три нуклеотида, расположенные последовательно в цепочке нуклеиновой кислоты (ДНК или РНК), образуют триплет или кодон (кодовое слово), который кодирует одну аминокислоту и ее местоположение в пептидной цепи. Кодоны различаются последовательностью и типами нуклеотидов (азотистых оснований). Существует 64 типа кодонов, что соответствует количеству возможных сочетаний из 4 (4 типа нуклеотидов, различающихся азотистыми основаниями) по 3 (43). 61 из них – информативные кодоны, они определяют (кодируют) аминокислоты. 3 кодона (в ДНК – АТТ, АТЦ, АЦТ, соответственно в иРНК – УАА, УАГ, УГА) называют стоп-кодонами, они обеспечивают окончание синтеза белковой цепочки. Кодон ТАЦ в ДНК или АУГ в иРНК (кодирует аминокислоту метионин) – стартовый, т.е. стоит первым в гене и с него начинается синтез пептида.

При расшифровке генетического кода оказалось, что большинство аминокислот кодируются несколькими разными кодонами, другими словами, существуют кодоны – синонимы, которые различаются часто только третьими нуклеотидами (азотистыми основаниями). Например, кодоны в ДНК ЦГА, ЦГГ, ЦГТ кодируют аланин, а кодоны ГЦА, ГЦГ, ГЦТ, ГЦЦ, ТЦТ, ТЦЦ – аргинин. Это свойство генетического кода называется вырожденностью или избыточностью.

Вместе с тем было показано, что один кодон кодирует только одну аминокислоту, т.е. в нем может быть записана информация только об одной аминокислоте – иными словами, генетический код однозначен.

Генетический код обладает также неперекрываемостью, это означает, что кодоны располагаются линейно, и один нуклеотид входит в состав только одного кодона; и непрерывностью – кодоны не отделены один от другого, располагаются в цепи нуклеиновой кислоты друг за другом, т.е. расстояние между кодонами соответствует расстоянию между нуклеотидами, а какие-либо сигналы, указывающие на начало или конец кодонов, отсутствуют.

Универсальность генетического кода подразумевает, что генетический код всех организмов характеризуется одинаковыми свойствами (триплетностью, вырожденностью и т.д.); и что смысл кодонов у всех организмов один и тот же (исключение составляют некоторые кодоны митохондрий и бактерий).

У всех прокариотических и эукариотических организмов генетическая информация записана только в одной цепи ДНК, которая называется кодогенной (информативной или значащей) и обозначается знаком "+", вторая цепь не несет генетической информации – некодогенная (неинформативная или незначащая), и обозначается знаком "–".

Сохранение генетической информации

Каким же образом в эритроцитах здорового человека образуются миллионы идентичных молекул гемоглобина, как правило, без единой ошибки в расположении аминокислот? Почему в эритроцитах больных серповидноклеточной анемией все молекулы гемоглобина имеют одну и ту же ошибку в одном и том же месте?

Для ответа на эти вопросы обратимся к примеру с книгопечатанием. Например, книга издана тиражом N экземпляров. Все N книг отпечатаны с одного шаблона - типографской матрицы, поэтому они совершенно одинаковы. Если бы в матрицу вкралась ошибка, то она была бы воспроизведена во всех экземплярах. Роль матрицы в клетках живых организмов выполняют молекулы ДНК. ДНК каждой клетки несет информацию не только о структурных белках, определяющих форму клетки (вспомните эритроцит), но и о всех белках-ферментах, белках-гормонах и других белках.

Углеводы и липиды образуются в клетке в результате сложных химических реакций, каждая из которых катализируется своим белком-ферментом. Владея информацией о ферментах, ДНК программирует структуру и других органических соединений, а также управляет процессами их синтеза и расщепления.

Поскольку молекулы ДНК являются матрицами для синтеза всех белков, в ДНК заключена информация о структуре и деятельности клеток, о всех признаках каждой клетки и организма в целом.

Каждый белок представлен одной или несколькими полимерными цепями. Участок молекулы ДНК, служащий матрицей для синтеза одной полипептидной цепи, т. е. в большинстве случаев одного белка, называют геном. Каждая молекула ДНК содержит множество разных генов. Всю информацию, заключенную в молекулах ДНК, называют генетической. Идея о том, что генетическая информация записана на молекулярном уровне и что синтез белков идет по матричному принципу, впервые была сформулирована еще в 20-х годах выдающимся отечественным биологом Н. К. Кольцовым.

Расшифровка генетического кода человека

В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.

Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%. Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков. Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.

Завершающая часть работы по секвенсированию генома человека заняла у учёных около трёх лет. Расшифровка хромосомы 1 потребовала наибольшего времени, поскольку эта хромосома - самая длинная во всем геноме. Она в шесть раз длиннее самых коротких хромосом (21, 22 и Y). В ней находится около 8% генетического кода: 3141 ген и 991 псевдоген, причем многие кодирующие последовательности перекрываются. Мутации и нарушения в хромосоме ответственны за возникновение более чем 350 заболеваний, включая рак. Так что важность публикации полной карты этой хромосомы сложно переоценить.



Наследственная информация ЭМБРИОЛОГИЯ ЖИВОТНЫХ

НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ, ГЕНЕТИЧЕСКАЯ ИНФОРМАЦИЯ – информация о признаках и свойствах организма, передаваемая по наследству. У многоклеточных организмов передается при помощи половых клеток – гамет. Записана в виде последовательности нуклеотидов в молекуле ДНК, которая и определяет синтез специфических белков клетки и соответствующее развитие всех признаков и свойств организма.


Общая эмбриология: Терминологический словарь - Ставрополь . О.В. Дилекова, Т.И. Лапина . 2010 .

Смотреть что такое "наследственная информация" в других словарях:

    Наследственная информация - * спадчынная інфармацыя * hereditary information последовательность нуклеотидов в молекуле ДНК, определяющая синтез специфических белков клетки, РНК, тРНК, и развитие на их основе соответствующих признаков организма (). Наследуемое свойство это… … Генетика. Энциклопедический словарь

    НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ - генетическая информация о наследственных структурах организма, получаемая от предков в виде совокупности генов. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    наследственная информация - см. Генетическая информация … Большой медицинский словарь

    Наследственная информация - Нуклеиновые кислоты (от лат. nucleus ядро) высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют… … Википедия

    НАСЛЕДСТВЕННАЯ ИНФОРМАЦИЯ - последовательность нуклеотидов в молекуле ДНК, определяющая синтез специфических белков клетки и развитие на их основе соответствующих признаков организма …

    Генетическая (наследственная) информация - специфически кодированные в организмах программы, получаемые ими от предков и заложенные в их наследственных структурах в виде совокупности генов о составе, строении и характере обмена составляющих организм веществ …

    Наследственная трансмиссия - представляет собой переход права на принятие наследования, то есть, если наследник, призванный к наследованию по завещанию или по закону, умер после открытия наследства, не успев его принять в установленный срок, право на принятие причитавшегося… … Википедия

    Информация генетическая (наследственная) - (см. Информация, Генетика) программа свойств организма, заложенная в наследуемых структурах (ДНК, отчасти в РНК) и получаемая от предков в виде генетического кода. Наследуемая информация определяет морфологическое строение, рост, развитие, обмен… … Начала современного естествознания

    генетическая информация - (син. наследственная информация) информация о строении и функциях организма, заложенная в совокупности генов … Большой медицинский словарь

    ГЕНЕТИЧЕСКАЯ ИНФОРМАЦИЯ - см. наследственная информация … Словарь ботанических терминов

Книги

  • , Спектор Анна Артуровна , Этот иллюстрированный атлас уникален тем, что не проведет юного читателя по странам и континентам, а наглядно покажет анатомию человека. Как в молекуле ДНК собранався наследственная… Категория: Человек. Земля. Вселенная Серия: Детский иллюстрированный атлас Издатель: Аванта , Купить за 696 руб
  • Детский иллюстрированный атлас анатомии человека , Спектор А. , Этот иллюстрированный атлас уникален тем, что не проведет юного читателя по странам и континентам, а наглядно покажет анатомию человека. Как в молекуле ДНК собранався наследственная… Категория:

Задание А28

Метаболизм клетки. Энергетический обмен и фотосинтез. Реакции матричного синтеза

2.5 Обмен веществ и превращения энергии – свойства живых организмов. Энергетический и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле

Обмен веществ.

Главное свойство всех живых организмов – обмен веществ, представляет собой совокупность взаимосвязанных процессов превращения веществ в организме. Основу обмена веществ составляют процессы синтеза и распада, которые, по сути, противоположны, но составляют единое целое.

Обмен веществ (метаболизм)
Энергетический обмен (катаболизм, диссимиляция, распад) Пластический обмен (анаболизм, ассимиляция, синтез)
Сложные вещества распадаются до более простых. Происходит синтез более сложных соединений из более простых.
Энергия выделяется. Часть ее запасается в АТФ, а другая часть рассеивается в виде тепла. АТФ расщепляется, а выделяющаяся энергия расходуется на образование химических связей вновь синтезированных молекул.
Организм обеспечивается энергией, необходимой для всех процессов жизнедеятельности, в том числе для реакций пластического обмена. Организм обеспечивается строительным материалом, необходимым для роста, развития организма и для процессов жизнедеятельности.

Из таблицы видно, что пластический и энергетический обмен – процессы противоположные. Рассмотрим пример.

6CO 2 + 6H 2 O + энергия ↔ C 6 H 12 O 6 + 6O 2

Если читать слева направо, то это упрощенное уравнение фотосинтеза (т.е. пластический обмен), в ходе которого из углекислого газа и воды с использованием солнечной энергии образуются углеводы и выделяется кислород. А если читать справа налево, то это упрощенное уравнение расщепление глюкозы (т.е. энергетический обмен), в ходе которого образуются углекислый газ, вода и выделяется энергия.



Пластический и энергетический обмен тесно взаимосвязаны. Реакции энергетического обмена идут с участием ферментов, которые образуются в ходе пластического обмена. Но, чтобы эти самые ферменты образовались, необходима энергия, которая выделяется в ходе реакций энергетического обмена.

Стадии энергетического обмена.

1) Первый этап – подготовительный :

· происходит в пищеварительной системе и (или) в лизосомах;

· полимеры расщепляются до мономеров (белки до аминокислот, полисахариды до моносахаридов), жиры до глицерина и жирных кислот;

· энергии выделяется мало, вся она рассеивается в виде тепла, АТФ не образуется.

2) Второй этап – гликолиз (анаэробный этап, бескислородный этап ):

· происходит в цитоплазме;

· глюкоза расщепляется до пировиноградной кислоты (ПВК);

· образуется 2 молекулы АТФ;

Судьба пировиноградной кислоты зависит от наличия кислорода и от того, в чьих клетках она образовалась. Если в клетках достаточно кислорода, то ПВК поступает в митохондрии и там полностью окисляется до углекислого газа и воды (третий этап). При недостатке кислорода ПВК превращается в молочную кислоту. Например, при длительной нагрузке наблюдается накопление молочной кислоты в мышцах.

У некоторых организмов (например, у дрожжей) продуктом гликолиза является спирт. Этот процесс называется спиртовым брожением. У анаэробных организмов гликолиз является единственным способом получения энергии.

3) Третий этап – полное окисление (аэробный этап, кислородный этап, клеточное дыхание ):

· происходит в митохондриях (не считая нескольких начальных реакций);

· образуется 36 молекул АТФ;

· ПВК полностью окисляется до углекислого газа и воды.

В этом этапе можно выделить три основных момента:

Сначала ПВК превращается в особое вещество, которое называется Ацетил-KoA, и именно оно уже поступает в митохондрии;

В матриксе митохондрий Ацетил-КоА вовлекается в цикл Кребса (цикл трикарбоновых кислот) и полностью окисляется до углекислого газа;

На складках внутренней мембраны (кристах) происходит окислительное фосфорилирование, в ходе которого синтезируется основная масса АТФ.

Фотосинтез.

Фотосинтез – процесс создания органических веществ из неорганических с использованием энергии солнечного света. Фотосинтез происходит в клетках растений, содержащих хлоропласты, и в клетках цианобактерий. Фотосинтез включает две стадии: световую и темновую.

Световая стадия.

· Происходит только на свету.

· Происходит на мембранах тилакоидов образованных внутренней мембраной хлоропластов.

· Происходит фотолиз воды, в результате которого образуется молекулярный кислород, который в данном случае является побочным продуктом и удаляется в окружающую среду. При фотолизе воды образуются также ионы водорода (H +), которые связываются с молекулами переносчиками (НАДФ) и в дальнейшем используются в реакциях темновой фазы.

· Образуется АТФ, также необходимый для реакций темновой фазы.

Темновая стадия.

· Происходит в строме хлоропласта.

· Углекислый газ поглощается из окружающей среды и поступает в хлоропласты.

· НАДФ∙Н (образовавшийся в световой стадии) высвобождает водород;

· Энергия АТФ расходуется на процесс: 6СО 2 + 24Н → С 6 Н 12 О 6 + 6Н 2 О;

· Образуется глюкоза, которая затем превращается в крахмал.

Хемосинтез.

Хемосинтез – процесс образования органических веществ из неорганических с использованием энергии, выделяющейся при окислении неорганических соединений. Хемосинтез открыт отечественным ученым С.Н. Виноградским. Как и все автотрофные организмы, хемосинтезирующие бактерии выполняют в биосфере роль продуцентов.

К хемотрофным организмам относятся ряд бактерий:

1) серобактерии окисляют сероводород до серы или до сульфатов;

2) железобактерии окисляют Fe +2 до Fe +3

3) водородные бактерии выделяющийся при гниении молекулярный водород до H + ;

4) нитрифицирующие бактерии окисляю аммиак до нитритов и нитратов.

Элементы содержания, проверяемые на ЕГЭ:

2.6 Генетическая информация в клетке. Гены, генетический код и его свойства.

Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Наследственная информация.

Все организмы отличаются друг от друга различными признаками. Все внешние и внутренние признаки и особенности обмена веществ зависят от наличия в организме определенных белков. Наследственная информация – это информация о белках, которые должны синтезироваться в организме . А если наследственная информация – информация о белках, значит реализация этой информации – процесс синтеза белка. Наследственная информация записана в молекулах ДНК (или РНК у ряда вирусов). Участок ДНК, содержащий информацию о первичной структуре белка, называется геном .

Генетический код.

ДНК (а значит и каждый ген) представляет собой последовательность нуклеотидов, а белок – последовательность аминокислот. Принцип соответствия последовательности нуклеотидов ДНК последовательности аминокислот в белке называется генетическим кодом .

Свойства генетического кода:

1) Триплетность – каждая аминокислота кодируется тремя нуклеотидами. Три нуклеотида – триплет.

2) Специфичность (однозначность) – каждый триплет кодирует только одну кислоту. Например, триплет ААА кодирует только аминокислоту фенилаланин и никакую другую.

3) Избыточность (вырожденность) – аминокислота может кодироваться разными триплетами. Например, аминокислота серин может кодироваться любым из шести триплетов: АГА, АГГ, АГЦ, АГТ, ТЦА, ТЦГ. Благодаря избыточности генетического кода некоторые генные мутации не оказывают влияния на фенотип. Например, замена последнего нуклеотида в триплете АГА на любой другой никак не изменит последовательность аминокислот в белке, потому что получившийся новый триплет всё равно будет кодировать аминокислоту серин.

4) Универсальность – генетический код одинаков у всех живых организмов. Так триплет ААА кодирует фенилаланин у человека, грибов, растений, бактерий и вирусов. Универсальность генетического кода свидетельствует о единстве происхождения органического мира. Благодаря универсальности генетического кода возможна «пересадка» генов из генома одного вида в геном другого, лежащая в основе генной инженерии.

5) Наличие знаков препинания. Существуют триплеты, которые не кодируют аминокислоты. Они являются сигналом начала или окончания синтеза определенной полипептидной последовательности.

В 50-х годах XX века были сделаны важнейшие открытия в области биологии: было разгадано строение главной молекулы жизни – молекулы ДНК. Принципы работы генетического конструктора выглядели гениально простыми и логичными, и не менее чем на полвека определили развитие биологии, практически став биологической догмой. Однако, как показывают последние исследования, детали генетического конструктора гораздо разнообразнее и сложнее, чем предполагалось прежде. О новейших исследованиях в области хранения и передачи наследственной информации рассказывает доктор биологических наук, сотрудник Палеонтологического Института РАН Александр Марков.


Классическая генетика


Классические представления о механизмах генетического наследования сложились в 50-60-е годы в результате серии великих открытий, которые сделали молекулярные биологи. Прежде всего это – расшифровка структуры ДНК и расшифровка генетического кода. То есть стало ясно, что наследственная информация записана в молекулах ДНК в виде последовательности из четырех «букв» – нуклеотидов. Эта информация переписывается с ДНК на РНК, а потом уже копия гена используется как инструкция для синтеза белка. Белки делают всю основную работу в нашем организме. Они определяют все его строение и все его функции. И каждые три буквы генетического кода кодируют аминокислоту, а белки состоят из аминокислот. Эти открытия породили некую эйфорию среди биологов, показалось, что тайна жизни разгадана. И это привело к некоторой догматизации открытых механизмов. И стало считаться общепризнанным, что наследственная информация записана в молекулах ДНК только так, что эта информация передается по цепочке от ДНК, то есть от генов, через РНК к белкам. А в обратном направлении – от белков к ДНК информация идти не может. Единственный способ возникновения наследственных изменений – это случайные ошибки при копировании молекул ДНК или мутации.


И такие представления оказались очень полезными, очень продуктивными для развития науки и привели к взрывному развитию молекулярной биологии. Но в процессе исследований постепенно стало выясняться, что на самом деле исходная схема была слишком упрощена и что на самом деле все гораздо сложнее и не так однозначно. Оказалось, что, во-первых, наследственные изменения возникают не только в результате случайных мутаций. Во-вторых, наследственная информация передается не только по этой однонаправленной цепочке. И, наконец, третье, что наследственная информация может быть записана не только в ДНК. Вот это три основных пункта, о которых хотелось бы сказать.


«Сознательные» мутации


Наследственные изменения возникают не только за счет случайных мутаций. В некоторых случаях изменения генов имеют вполне осмысленный, можно сказать целенаправленный характер. Яркий пример – это так называемая конверсия генов, которая происходит, в частности, у болезнетворных бактерий.


У гонококка – возбудителя гонореи – есть поверхностный белок, по которому его узнают клетки иммунной системы. Когда бактерии попадают в организм, клетки иммунной системы учатся распознавать этот поверхностный белок гонококка. И когда научатся, размножатся лимфоциты с соответствующими рецепторами, которые начинают этот гонококк уничтожать. А гонококк берет и «сознательно» меняет ген своего поверхностного белка, чтобы его перестали узнавать. У него есть ген поверхностного белка, а, кроме того, в геноме есть несколько неработающих копий этого гена, немного отличающихся друг от друга. И время от времени происходит следующее: какой-то фрагмент работающего гена заменяется фрагментом одной из нерабочих копий, и таким образом ген становится немножко другим, белок становится немножко другим, лимфоциты перестают его узнавать. В результате иммунитет против гонореи образуется с большим трудом или вообще не образуется.


Другой пример неслучайных изменений – встречается у бактерий как реакция на стресс: они повышают скорость мутирования. То есть когда, например, кишечная палочка попадает в стрессовую обстановку, она начинает производить специально такие белки, которые при копировании ДНК совершают гораздо больше ошибок, чем обычно. То есть они сами повышают скорость мутирования. Это, вообще говоря, шаг рискованный, в благоприятных условиях этого лучше не делать, потому что среди возникающих мутаций подавляющее большинство вредных или бесполезных. Но если уже все равно погибать, то бактерии этот механизм включают.


Другой путь передачи информации: от РНК к ДНК


Наследственная информация передается не только по той цепочке, которая изначально была постулирована ДНК – РНК – белок. Во-первых, было обнаружено явление так называемой обратной транскрипции, то есть информация может переписываться, например, у некоторых вирусов, с РНК на ДНК, то есть в обратную сторону. Оказалось, что это достаточно распространенный процесс. В геноме человека тоже есть соответствующий фермент и в результате обратной транскрипции с молекулы РНК идет переписывание в геном, в ДНК некоторой информации.


Как это происходит? В РНК попадает какая-то информация, которой нет в ДНК. На том этапе, когда информация существует в форме РНК, происходит активное редактирование этой информации, появляется редактор. Иногда ее редактируют белки, а иногда сама РНК сама себя редактирует.


Обычно у всех высших организмов гены состоят из многих кусочков, то есть это не сплошная последовательность ДНК, где записана структура белка, но она разрезана на кусочки, и между ними вставлены более-менее длинные куски ДНК, которые не кодируют белок. Они называются интроны. При редактировании РНК могут происходить различные изменения. Например, кодирующие участки могут склеиваться в разном порядке. И при этом все настолько сложно, что эти вырезаемые кусочки РНК – это активные молекулы, которые активно участвуют во всех процессах, они регулируют активность в каких-то других генах, они регулируют редактирование РНК, своих, других. То есть все запутано в сложнейший клубок взаимодействий.


Скажем, мы берем текст и вырезаем какие-то ненужные слова и выбрасываем в корзину. Теперь представьте себе, что эти ненужные слова вылезли из корзины, лезут обратно в книгу, начинают копошиться, менять какие-то слова, сами куда-то встраиваться. Вопреки классической схеме выяснилось, что РНК – очень активное действующее лицо во всех этих информационных процессах.


Такая отредактированная РНК может быть переписана обратно в ДНК и таким образом в какой-то степени может происходить наследование приобретенных признаков. Потому что, вид который принимает в конечном итоге зрелая РНК – это в определенном смысле приобретенный признак, он может быть переписан обратно в ДНК и тогда в ДНК появляется ретро-псевдоген. И таких ретро-псевдогенов в человеческом геноме полным-полно.


Носителем наследственной информации может быть не только ДНК


Наследственная информация, как выясняется, может быть записана не только в ДНК, а так же, по-видимому, и в РНК. В 2005-2006 году появился ряд статей в самых уважаемых научных журналах, где приводятся результаты экспериментов, в которых просто совершенно вопиющим образом нарушаются законы классической генетики. Взяли мышей, у мышей есть такой ген под названием Kit, он выполняет много разных функций и, том числе, от него зависит окраска. В экспериментальных целях была изготовлена мутантно-измененная версия этого гена «Kit минус». Каждый ген у мышей, у человека имеется в двух экземплярах, один от отца, другой – от матери. Мыши с генотипом «Kit минус-минус» просто погибают. Мыши с генотипом «Kit плюс-минус» имеют белые лапки и белый хвостик, а мыши «Kit плюс-плюс» имеют нормальную серую окраску. И по законам классической генетики, если мы берем мышей плюс-минус, то мы должны получить в потомстве следующее распределение: четверть мышей будут иметь генотип минус-минус и просто умрут сразу, четверть мышей будут иметь генотип плюс-плюс и, соответственно, нормальную окраску и половина, 50% будут иметь генотип плюс-минус и, соответственно, будут иметь белые лапки и хвост. Это еще в школе изучаемые закономерности Менделя.


А в итоге почему-то получили, что у 95% выживших мышат белые лапки и хвост. Как это могло произойти? Стали смотреть генотип, благо сейчас это достаточно нетрудно сделать. И оказалось, что с генотипом все в порядке, четверть мышат имеют генотип плюс-плюс и должны иметь нормальную окраску, однако они имели белые лапы и хвост. То есть получается, что у этих мышей нет гена белолапости и белохвостости, а признак есть. Откуда берется признак, если нет гена? То есть стало ясно, что в данном случае наследственная информация передается не через ДНК, потому что в ДНК записано одно, а видим мы другое. Что же тогда, если не ДНК передает этот признак? Естественно, подозрение в первую очередь пало на РНК. Выделили из мышей с генотипом плюс-минус ту РНК, которая считывается с мутантной копии гена. Эти фрагменты ввели в яйцеклетку дикой мыши, у которой никогда в роду никаких белохвостых не было. В результате получился белохвостый и белолапый мышонок. То есть, очевидно, эта РНК, которая попадает от родителей или специально вводится, эта мутантная РНК каким-то образом воздействует на нормальную РНК, которая считывается с нормального гена. Мутантная РНК делает из нормальной РНК ненормальную, и это передается по наследству.


В эксперименте с мышами было показано, что в некоторых случаях наследственная информация может передаваться через РНК. Таким образом становится ясно, что работа с информацией в живых клетках гораздо более сложно организована, чем предполагали классики генетики.